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1. Introduction

Study of unstable objects might shed new light in understanding properties of string theory

in time-dependent backgrounds [1 – 6]. It has been shown by A. Sen that the tachyon DBI

action [7 – 10] can capture many properties of the decay of the non-BPS D-branes [2, 3]

around the stable point of the tachyon potential.

This action has been proposed in [8] to reproduce the leading order terms of the

momentum expansion of the disk level tachyon S-matrix elements. The S-matrix method

can be used to find the tachyon action around the unstable point of non-BPS D-branes/D-

brane-anti-D-brane where the higher derivatives of the tachyon are important. However,

one may use the resulting action around the stable point where the higher derivative terms

are not important. A subtlety in the tachyon DBI action around unstable point that the S-

matrix method dictates is that while the massless fields carry identity internal CP matrix,

the tachyon must carry σ1 and σ2 matrices [11]. This subtlety however may not appear in

the tachyon action around the stable point. The WZ part of the effective action of non-BPS

D-branes/D-brane-anti-D-brane can also be reproduced exactly by the leading order terms

of the corresponding S-matrix elements [12 – 14, 11]. These couplings has been also found

in [15, 16] from boundary string field theory.

The world volume fermions has been added into the tachyon DBI action by making

the action supersymmetric [9]. If one removes the tachyon field, the action is then the

supersymmetrized DBI action [19, 20]. The 16-component fermions θ1, θ2 in this action

are related to 32-component fermion θ as

θ1 =
1

2
(1 + Γ11)θ, θ2 =

1

2
(1 − Γ11)θ (1.1)

In static gauge, one choses θ2 = 0 [19]. Returning the tachyon to gauge-fixed action,

one finds

L=−TpV (T )
√

− det(ηab + Fab − 2θ̄1γa∂aθ1 + θ̄1γµ∂aθ1θ̄1γµ∂bθ1 + ∂aT∂bT ) (1.2)
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In this paper we would like to find the couplings of tachyon to fermion with the S-matrix

method and compare the result with the above action.

An outline of the paper is as follows. In the next section, by explicit calculation of

some examples, we will show that a S-matrix element is independent of the choice of the

picture of the vertex operators when one includes the internal CP factors. This allows one

to calculate a S-matrix element in one particular picture and then rewrite the result in

another picture in which the vertex operators have the same internal CP matrices as the

CP matrices of the corresponding fields in the effective action, e.g., the massless fields in

the field theory carry identity CP matrix. In section 2.1, we will also clarify the presence

of internal CP matrices σ1 and σ2 for tachyon in the tachyon DBI action. In section 3,

by specifying the internal matrix of the massless Ramond vertex operator, we will show

that the internal CP factor of the S-matrix element of two fermions and odd number of

tachyons is zero. In section 4, we will calculate the S-matrix element of two fermions and

two tachyons and find a momentum expansion for the amplitude. At one momentum level,

we find a coupling which is zero for abelian case. At three momentum level and for abelian

case, we find that the coupling is exactly the same as the corresponding coupling in the

gauge-fixed supersymmetric tachyon DBI action (1.2).

2. S-matrix elements in different pictures

The internal CP matrix of an open string of non-BPS D-brane can be read from the external

CP matrix of D-brane-anti-D-brane [17]. The non-BPS Dp-branes of type IIA(B) string

theory are defined by projecting Dp-brane-anti-Dp-brane of type IIB(A) with (−1)FL where

FL denotes the contribution to the space-time fermion number from the left-moving sector

of the string world-sheet [17]. The open strings of the brane-anti-brane can be labeled by

the external 2 × 2 Chan-Paton factors:

(a) :

(

0 0

0 1

)

, (b) :

(

1 0

0 0

)

, (c) :

(

0 0

1 0

)

, (d) :

(

0 1

0 0

)

(2.1)

The massless states carry CP factor (a), (b), and the tachyons carry (c) and (d) factors.

The projection operator (−1)FL has no effect on the world-sheet fields, however, using the

fact that it exchanges brane with anti-brane, one observes that its effect on the CP matrix

Λ is the following:

Λ → σ1Λ(σ1)
−1,

where σ1 is the Pauli matrix. The states with CP matrices I and σ1 are survived. The

massless fields then carry the internal CP matrix I and the real tachyon of non-BPS D-

brane carries the CP factor σ1.

One needs to define the vertex operator in different pictures to be able to calculate

the S-matrix elements. We assign the above internal CP matrices to the vertex operators

in the 0 picture. Using the observation that the picture changing operator on a non-BPS

brane naturally comes with σ3 [18], one observes that in -1 picture, the internal CP matrix
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of massless states is σ3 and the CP matrix of tachyon is σ2. The open strings of DD̄ system

carry the same internal CP matrices, as well as the external CP matrices (2.1).

The closed string Ramond-Ramond vertex operator also carries the internal CP matrix.

It has been shown in [11] that the RR vertex operator inDD̄ system in (−1/2,−1/2) picture

carries CP matrix σ3. For non-BPS branes, there should be an extra factor of σ1 in the RR

vertex operator [17]. The closed strings in the NSNS sector in (0, 0) picture should carry

internal CP matrix I. Using the internal CP matrices, one can easily check that the CP

factor of tree level S-matrix element of one RR, odd number of tachyons and an arbitrary

number of closed string NSNS states is zero for DD̄ system as expected. Moreover, the

internal CP factor of tree level S-matrix element of one RR, even number of tachyons and

an arbitrary number of closed string NSNS states is zero for non-BPS D-brane.

It is well known that in the world volume of BPS D-branes, the S-matrix elements are

independent of the choice of the picture of the vertex operators. By explicit calculation

of some S-matrix elements, we are going to show that in the world volume of non-BPS

D-branes, the S-matrix elements are independent of the choice of the picture of the vertex

operators only when they include the internal CP factor. As a first example, consider

the S-matrix element of one gauge field and two tachyons. In one particular choice of the

pictures, it is given by1

A ∼
∑

non−cyclic

∫

dx1dx2dx3Tr 〈V −1
T (x1)V

−1
T (x2)V

0
A(x3)〉 (2.2)

where the vertex operators are

V −1
T = e−φe2ik·Xλ⊗ σ2, k2 = 1/4

V 0
A = ξµ(∂Xµ + 2ik ·ψψµ)e2ik·Xλ⊗ I, k2 = 0, ξ ·k = 0 (2.3)

where λ is the external U(N) matrix. The internal CP factor for the above amplitude is

Tr (σ2σ2) = 2. To perform the correlators, one needs the propagators for the world-sheet

fields, i.e.,

〈Xµ(z)Xν(w)〉 = −ηµν log(z − w) ,

〈ψµ(z)ψν(w)〉 = −ηµν(z −w)−1 ,

〈φ(z)φ(w)〉 = − log(z − w) . (2.4)

Performing the correlators and using the on-shell conditions, one finds that the integrand

is 2ik1·ξx−1
12 x

−1
13 x

−1
23 for both 123 and 132 orderings. It is SL(2, R) invariant. Removing the

volume of the SL(2, R) group which amounts to multiplying the amplitude by |x12x13x23|,
one finds that for 123 ordering the amplitude is 2ik1·ξ and for 132 ordering it is −2ik1·ξ, i.e.,

A ∼ 2ik1 ·ξ (Tr (λ1λ2λ3) − Tr (λ1λ3λ2)) (2.5)

which is symmetric under interchanging the two tachyons. Another choice for the vertex

operators is 〈V 0
T (x2)V

0
T (x2)V

−2
A (x3)〉 where V −2

A = e−2φV 0
A. In this case also the internal

1We have set α
′ = 2 in the string theory side.
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CP factor is Tr (σ1σ1) = 2. After performing the correlators, one finds that the integrand

is exactly as before, i.e., 2ik1 ·ξx−1
12 x

−1
13 x

−1
23 for both 123 and 132 orderings. So the final

result is the same as above. For another choice of the pictures, the amplitude is given by

A ∼
∑

non−cyclic

∫

dx1dx2dx3Tr 〈V −1
T (x1)V

0
T (x2)V

−1
A (x3)〉 (2.6)

where the vertex operators are

V 0
T = 2ik ·ψe2ik·Xλ⊗ σ1

V −1
A = ξµψ

µe−φe2ik·Xλ⊗ σ3 (2.7)

Performing the correlators and using the on-shell conditions, one finds that the integrand

is 2ik1 ·ξx−1
12 x

−1
13 x

−1
23 for 123 ordering where x−1

23 is coming from fermion correlator, and it

is 2ik1·ξx−1
12 x

−1
13 x

−1
32 for 132 ordering. This time x−1

32 is coming from the fermion correlator.

Note that in 132 ordering x3 < x2 and in 123 ordering x2 < x3. Fixing the SL(2, R)

symmetry as before, one finds

A ∼ 2ik1 ·ξ (Tr (λ1λ2λ3)Tr (σ2σ1σ3) + Tr (λ1λ3λ2)Tr (σ2σ3σ1)) (2.8)

Obviously, without considering the internal CP factors, the two amplitudes are not the

same. Using the fact that σ1σ2 = −σ2σ1, the two amplitudes are identical when considering

the CP factors. This S-matrix element is consistent with the coupling Tr (DµTD
µT ). Using

the fact that the effective field theory of non-BPS D-branes should be reduced to the field

theory of BPS D-branes when tachyon is set to zero, and the fact that there is no internal

CP factor for the field theory of BPS D-branes, one realizes that the gauge field in the

effective field theory of non-BPS D-branes must carry identity matrix. So in the coupling

Tr (DµTD
µT ) the gauge field carries identity matrix and tachyons carry internal matrix

σ2 or σ1.

2.1 S-matrix element of four tachyons

The S-matrix element of four tachyons in which two of them are in 0 picture and the other

two are in -1 picture are given by one of the following amplitudes:

As ∼
∑

non−cyclic

∫

dx1dx2dx3dx3Tr 〈V −1
T (x1)V

−1
T (x2)V

0
T (x3)V

0
T (x4)〉

At ∼
∑

non−cyclic

∫

dx1dx2dx3dx3Tr 〈V −1
T (x1)V

0
T (x2)V

0
T (x3)V

−1
T (x4)〉

Au ∼
∑

non−cyclic

∫

dx1dx2dx3dx3Tr 〈V −1
T (x1)V

0
T (x2)V

−1
T (x3)V

0
T (x4)〉

where the indexes s, t, u stand for the Mandelstam variables which are

s = −(k1 + k2)
2 ,

t = −(k2 + k3)
2 ,

u = −(k1 + k3)
2 .
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and satisfy the constraint

s+ t+ u = −1 . (2.9)

Before performing the correlators, let us see how much we know about the amplitude. Each

of the above amplitudes has pole in s, t and u channels. Using the observation that the

gauge field in the effective field theory must have identity internal matrix, one realizes that

As, At,Au should have massless pole only in s-channel, t-channel, u-channel, respectively.

This is consistent with the above constraint which indicates that one can not send all

the Mandelstam variables to zero. So s, t, u channels of effective field theory should be

corresponding to the following expansions:

s− channel : lim
s→0 ,t,u→−1/2

As

t− channel : lim
t→0 ,s,u→−1/2

At (2.10)

u− channel : lim
u→0 ,s,t→−1/2

Au

From the field theory point of view, we know that the S-matrix element of four tachyons

must have massless pole in all channels. So the correct S-matrix element should be the

sum of the three amplitudes, i.e., As + At + Au.

The S-matrix element of four tachyons can also be given by the following:

A ∼
∑

non−cyclic

∫

dx1dx2dx3dx3Tr 〈V 0
T (x1)V

0
T (x2)V

0
T (x3)V

−2
T (x4)〉

In this case the amplitude can have massless pole in all s, t, u channels. However, the

constraint (2.9) does not allow us to send s, t, u to zero at the same time. So s, t, u channels

of effective field theory in this case should be corresponding to the following expansions:

s− channel : lim
s→0 ,t,u→−1/2

A

t− channel : lim
t→0 ,s,u→−1/2

A (2.11)

u− channel : lim
u→0 ,s,t→−1/2

A

To have massless pole in all channels, one has to consider the sum of the above expansions,

i.e., lims→0 ,t,u→−1/2 A + limt→0 ,s,u→−1/2 A + limu→0 ,s,t→−1/2 A.

Now let us perform the correlators in the amplitudes. Performing the correlators,

one finds that the integrand is SL(2, R) invariant. Removing this symmetry by fixing

x1 = 0, x3 = 1, x4 = ∞ for 1234 ordering, x1 = 0, x4 = 1, x3 = ∞ for 1243 ordering and

so on, one finds

As ∼ k1 ·k2

(

As
Γ(−2t)Γ(−1 − 2s)

Γ(−1 − 2t− 2s)
+Bs

Γ(−1 − 2s)Γ(−2u)

Γ(−1 − 2s − 2u)
+ Cs

Γ(−2t)Γ(−2u)

Γ(−2t− 2u)

)

– 5 –



J
H
E
P
1
2
(
2
0
0
8
)
0
5
9

The coefficients As, Bs, Cs are

As =
1

4

(

Tr (λ1λ2λ3λ4)Tr (σ2σ2σ1σ1) + Tr (λ1λ4λ3λ2)Tr (σ2σ1σ1σ2)
)

,

Bs =
1

4

(

Tr (λ1λ3λ4λ2)Tr (σ2σ1σ1σ2) + Tr (λ1λ2λ4λ3)Tr (σ2σ2σ1σ1)
)

,

Cs =
1

4

(

Tr (λ1λ4λ2λ3)Tr (σ2σ1σ2σ1) + Tr (λ1λ3λ2λ4)Tr (σ2σ1σ2σ1)
)

.

Using the identity 4k1 ·k2 = −1 − 2s, one can write the amplitude as

As ∼ As
Γ(−2s)Γ(−2t)

Γ(−1 − 2s− 2t)
+Bs

Γ(−2s)Γ(−2u)

Γ(−1 − 2s− 2u)
− Cs

Γ(−2t)Γ(−2u)

Γ(−1 − 2t− 2u)
(2.12)

Performing the trace over the internal CP matrices, one can easily observes that the am-

plitude is symmetric under interchanging the tachyons. However, the expansion s →
0, (t, u) → −1/2 is symmetric only under 1 ↔ 2 and 3 ↔ 4.

Similarly, for the amplitudes Au and At, one finds

Au ∼ −Au
Γ(−2s)Γ(−2t)

Γ(−1 − 2s − 2t)
+Bu

Γ(−2u)Γ(−2s)

Γ(−1 − 2u− 2s)
+ Cu

Γ(−2u)Γ(−2t)

Γ(−1 − 2u− 2t)

At ∼ At
Γ(−2t)Γ(−2s)

Γ(−1 − 2t− 2s)
−Bt

Γ(−2s)Γ(−2u)

Γ(−1 − 2s− 2u)
+ Ct

Γ(−2t)Γ(−2u)

Γ(−1 − 2t− 2u)
(2.13)

where

Au =
1

4

(

Tr (λ1λ2λ3λ4)Tr (σ2σ1σ2σ1) + Tr (λ1λ4λ3λ2)Tr (σ2σ1σ2σ1)
)

,

Bu =
1

4

(

Tr (λ1λ3λ4λ2)Tr (σ2σ2σ1σ1) + Tr (λ1λ2λ4λ3)Tr (σ2σ1σ1σ2)
)

,

Cu =
1

4

(

Tr (λ1λ4λ2λ3)Tr (σ2σ1σ1σ2) + Tr (λ1λ3λ2λ4)Tr (σ2σ2σ1σ1)
)

.

At =
1

4

(

Tr (λ1λ2λ3λ4)Tr (σ2σ1σ1σ2) + Tr (λ1λ4λ3λ2)Tr (σ2σ2σ1σ1)
)

,

Bt =
1

4

(

Tr (λ1λ3λ4λ2)Tr (σ2σ1σ2σ1) + Tr (λ1λ2λ4λ3)Tr (σ2σ1σ2σ1)
)

,

Ct =
1

4

(

Tr (λ1λ4λ2λ3)Tr (σ2σ2σ1σ1) + Tr (λ1λ3λ2λ4)Tr (σ2σ1σ1σ2)
)

.

The above amplitudes, without considering the internal CP factors, have been found in [22].

Performing the internal CP factors, one observes that the above amplitudes are symmetric

under interchanging the tachyons. However, the expansion t → 0, (s, u) → −1/2 for At

is symmetric only under 2 ↔ 3 and 1 ↔ 4. Similarly for Au. However, the combination

As + At + Au with the expansion (2.10) is symmetric under interchanging the tachyons.

For the amplitude A, one finds the integrand for 1234 ordering to be

|x12|4k1·k2|x13|4k1·k3|x14|4k1·k4|x23|4k2·k2|x24|4k2·k4 |x34|4k3·k4

×
(

(4k1 ·k2)
2x−1

12 x
−1
34 − (4k1 ·k3)

2x−1
13 x

−1
24 + (4k2 ·k3)

2x−1
14 x

−1
23

)

(2.14)
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where the second line is the world sheet fermion correlator. Fixing x1 = 0, x3 = 1, x4 = ∞,

one finds the integral to be Γ(−2t)Γ(−2s)/Γ(−1−2t−2s). Similarly for the other orderings.

The final result is

A ∼ α
Γ(−2t)Γ(−2s)

Γ(−1 − 2t− 2s)
+ β

Γ(−2s)Γ(−2u)

Γ(−1 − 2s − 2u)
+ γ

Γ(−2t)Γ(−2u)

Γ(−1 − 2t− 2u)
(2.15)

where

α =
1

2

(

Tr (λ1λ2λ3λ4) + Tr (λ1λ4λ3λ2)
)

,

β =
1

2

(

Tr (λ1λ3λ4λ2) + Tr (λ1λ2λ4λ3)
)

,

γ =
1

2

(

Tr (λ1λ4λ2λ3) + Tr (λ1λ3λ2λ4)
)

. (2.16)

Note that the internal CP factor of amplitude A is Tr (σ1σ1σ1σ1) = 2 for any ordering of

the vertex operators. The above amplitude is symmetric under interchanging the tachyons.

Using the identities σ1σ2 = −σ2σ2 and Tr (σ1σ1σ2σ2) = 2, one can easily check that

As = Au = At = A, as expected. This indicates that the expansion (2.11) is the only

possible expansion for A, because the only expansion for, say, As is (2.10). Comparing the

amplitudes As+Au+At in which the trace over the internal CP matrices does not perform,

with the S-matrix element of four transverse scalars, one realizes that the expansion (2.10)

is very similar to the low energy expansion of the S-matrix element of four scalars [23].

Whereas the expansion (2.11) in which there is no CP factor is not similar to the low

energy expansion of the scalar amplitude. This observation has been used in [11] to write

the four tachyon couplings in the non-abelian tachyon DBI form in which the tachyons

carry internal CP matrices, e.g., for abelian case, it is

LDBI = −Tp

2
STr

(

V (T iT i)

√

1 +
1

2
[T i, T j ][T j , T i] (2.17)

×
√

− det(ηab + 2πα′Fab + 2πα′∂aT i(Q−1)ij∂bT j)

)

where

Qij = δij − i[T i, T j ]

The superscripts i, j = 1, 2 and there is no sum over them. In above, T 1 = Tσ1 and

T 2 = Tσ2. After expanding the square roots, one should choose two of the tachyons to be

T 2 and the others to be T 1, and then performs the symmetric trace which is symmetric

between ∂aT
i, [T i, T j ] and the individual T i of the tachyon potential. This simplifies the

first square root to be 1+ [T 1, T 2][T 2, T 1]/4. For the first terms, the CP matrix of tachyon

in the rest is σ1 and/or σ2. For the second terms, on the other hand, the internal CP matrix

of all other terms is σ1 because the two σ2’s appear in [T 1, T 2][T 2, T 1]/4. For example,

for these terms Qij = δij . Around the stable point of the tachyon potential, T → ∞, one

can approximate 1 + [T 1, T 2][T 2, T 1]/4 ∼ [T 1, T 2][T 2, T 1]/4. Hence, one can approximate

– 7 –
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the action (2.17) with the usual tachyon DBI action in which the tachyon potential is

T 4V (T 2). The expansion of V (TT ) up to forth order of tachyon is consistent with e−πTT/2

so as T → ∞, the potential T 4V (T 2) → 0, as expected in the tachyon condensation of a

non-BPS D-brane.

Having found that the S-matrix elements in different pictures are identical when the

internal CP factors are included, we now turn to the calculation of the S-matrix elements

involving tachyon and fermion.

3. The Ψ̄ΨT
2n+1 amplitude

The three point coupling between two Ramond vertex operators and one gauge field vertex

operator in the world volume of BPS D-brane is given by [21]

AΨ̄,Ψ,A ∼ ūA
1 γ

µ
ABu

B
2 ξµ (Tr (λ1λ2λ3) − Tr (λ1λ3λ2)) (3.1)

where uA is (commuting) 10-dimensional Majorana-Weyl wave function. In non-BPS D-

brane case also the coupling is given by the above amplitude. To fix our notation and specify

the internal CP matrix of the Ramond vertex operators, we calculate this amplitude here

again. The amplitude is given at the world-sheet level by the following correlation function:

AΨ̄,Ψ,A ∼
∑

non−cyclic

∫

dx1dx2dx3Tr 〈V (−1/2)

Ψ̄
(x1)V

(−1/2)
Ψ (x2)V

(−1)
A (x3)〉 (3.2)

The internal CP matrix of the Ramond vertex operators should be defined as

V
(−1/2)

Ψ̄
= ūAe−φ/2SA e

2ik.Xλ⊗ σ3

V
(−1/2)
Ψ = uAe−φ/2SA e

2ik.Xλ⊗ I (3.3)

to give non-zero result for the above amplitude. The above internal matrices are consistent

with the internal CP matrix of the RR vertex operator in (−1/2,−1/2) picture which is

σ3. The internal CP factor of the above amplitude is Tr (σ3σ3) = 1 for any ordering of the

open string vertex operators. The amplitude (3.1) has been found in [21] by considering

123 and 213 orderings. We would like to consider 123 and 132 orderings here. For 123

ordering one needs the following correlators [21]:

〈: e− 1

2
φ(x1) : e−

1

2
φ(x2) : e−φ(x3)〉 = x

− 1

4

12 x
− 1

2

13 x
− 1

2

23

〈: SA(x1) : SB(x2) : Ψµ(x3) :〉 =
(γµ)AB√

2
x
−3/4
12 x

−1/2
13 x

−1/2
23

The integrand is then proportional to x−1
12 x

−1
13 x

−1
23 . For 132 ordering the integrand should

be the same which fixes the following correlators:

〈: e− 1

2
φ(x1) : e−φ(x3) : e−

1

2
φ(x2)〉 = x

− 1

4

12 x
− 1

2

13 x
− 1

2

23

〈: SA(x1) : Ψµ(x3) : SB(x2) :〉 =
(γµ)AB√

2
x
−3/4
12 x

−1/2
13 x

−1/2
23 (3.4)
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Fixing the SL(2, R) symmetry as in (2.2), one finds (3.1). This amplitude is antisymmetric

under interchanging 1 ↔ 2. This minus sign cancels the minus sign from permutation of

two fermions. So the amplitude 123+132 and 213+231 are equal. That is why one consid-

ers only non-cyclic ordering of the vertex operators in the amplitude.2 The amplitude (3.1)

is consistent with the non-abelian kinetic term of fermion, i.e., Tr (Ψ̄ΓµDµΨ). Using the

observation that the S-matrix elements are independent of the pictures of the vertex op-

erators when the internal CP factors are included, we note that the amplitude (3.1) is

the S-matrix element of 〈V (1/2)

Ψ̄
(x1)V

(−1/2)
Ψ (x2)V

−2
A (x3)〉 in which all vertex operators have

identity CP matrix. So there is no internal CP matrix for Tr (Ψ̄ΓµDµΨ), as expected, since

this coupling appears in BPS D-brane case as well.

The S-matrix element of two fermions and odd number of tachyons is given by

AΨ̄,Ψ,T,T,···,T ∼
∫

dx1 · · · dx2n+3Tr 〈V (−1/2)

Ψ̄
(x1)V

(−1/2)
Ψ (x2)V

(−1)
T (x3)V

0
T (x4) · · · V 0

T (x2n+3)〉

The spin operator in the S-matrix element makes the correlation function of the world

sheet fermion to be non-zero. However, the internal CP factor is zero for any ordering of

the vertex operators, hence,

AΨ̄,Ψ,T,T,···,T = 0 (3.5)

So there is no coupling between fermion and odd number of tachyons in the world volume

of non-BPS D-breane/D-brane-anti-D-brane.

4. The Ψ̄ΨT
2 amplitude

The S-matrix element of two fermions and two tachyons is given by

AΨ̄,Ψ,T,T ∼
∫

dx1 · · · dx4Tr 〈V (−1/2)

Ψ̄
(x1)V

(−1/2)
Ψ (x2)V

(−1)
T (x3)V

0
T (x4))〉

Performing the Xa(x) correlation function using the corresponding world-sheet propaga-

tor (2.4) and using the correlators in the previous section, one finds that the integrand is

proportional to

|x12|4k1·k2|x13|4k1·k3|x14|4k1·k4|x23|4k2·k2 |x24|4k2·k4|x34|4k3·k4 × x−1
12 x

− 1

2

13 x
− 1

2

14 x
− 1

2

23 x
− 1

2

24 (4.1)

for any ordering. It has the SL(2, R) symmetry. Gauging away this symmetry by fixing

x1 = 0, x3 = 1, x4 = ∞ for 1234 ordering, one finds

A1234 ∼ −ūA
1 γ

µ
ABu

B
2 k4µ

Γ(−2t)Γ(−2s)

Γ(−2t− 2s)
Tr (λ1λ2λ3λ4)Tr (σ3σ2σ1) (4.2)

The Mandelstam variables satisfy the on-shell condition

s+ t+ u = −1

2
(4.3)

2Alternatively, one may consider the wave function u
A to be anti-commuting. In this case there is no

extra minus sign when permuting two fermion vertex operators in (3.2).
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For 1243 ordering, we fix the SL(2, R) symmetry by fixing x1 = 0, x4 = 1, x3 = ∞.

The amplitude becomes

A1243 ∼ −ūA
1 γ

µ
ABu

B
2 k4µ

Γ(−2s)Γ(−2u)

Γ(−2s− 2u)
Tr (λ1λ2λ4λ3)Tr (σ3σ1σ2) (4.4)

For 1324 ordering, we fix the SL(2, R) symmetry by fixing x1 = 0, x2 = 1, x4 = ∞.

The amplitude becomes

A1324 ∼ −iūA
1 γ

µ
ABu

B
2 k4µ

Γ(−2u)Γ(−2t)

Γ(−2u− 2t)
Tr (λ1λ3λ2λ4)Tr (σ3σ2σ1) (4.5)

Similarly for the other three orderings. The final result is

A ∼ ūA
1 γ

µ
ABu

B
2 k4µ ×

(

Γ(−2t)Γ(−2s)

Γ(−2t− 2s)
(Tr (λ1λ2λ3λ4)Tr (σ3σ2σ1) − Tr (λ1λ4λ3λ2)Tr (σ3σ1σ2))

+
Γ(−2s)Γ(−2u)

Γ(−2s − 2u)
(Tr (λ1λ2λ4λ3)Tr (σ3σ1σ2) − Tr (λ1λ3λ4λ2)Tr (σ3σ2σ1))

+i
Γ(−2u)Γ(−2t)

Γ(−2u− 2t)
(Tr (λ1λ3λ2λ4)Tr (σ3σ2σ1) + Tr (λ1λ4λ2λ3)Tr (σ3σ1σ2))

)

One can easily check that for the choice 〈V (−1/2)

Ψ̄
(x1)V

(−1/2)
Ψ (x2)V

(0)
T (x3)V

−1
T (x4))〉 the

result is exactly the same as above. The amplitude is hermitian, it is symmetric under

interchanging 3 ↔ 4 and antisymmetric under 1 ↔ 2, as expected. Note that if one does

not include the internal CP factors in (4.6), the amplitude would not satisfy any of these

symmetries. Performing the trace over the internal CP matrices, one finds

A ∼ ūA
1 γ

µ
ABu

B
2 k4µ

(

α
Γ(−2t)Γ(−2u)

Γ(−2t− 2u)
− β

Γ(−2t)Γ(−2s)

Γ(−2t− 2s)
+ iη

Γ(−2u)Γ(−2s)

Γ(−2u− 2s)

)

(4.6)

where α, β are given in (2.16) and

η =
1

2
(Tr (λ1λ3λ2λ4) − Tr (λ1λ4λ2λ3)) (4.7)

Using the observation that the S-matrix element in different pictures should be identical

when internal CP factors are included, one finds that the above amplitude should be

the result of the S-matrix element 〈V (1/2)

Ψ̄
(x1)V

(−1/2)
Ψ (x2)V

(−1)
T (x3)V

−1
T (x4))〉 in which the

fermions carry identity matrix and tachyons carry σ2. So the coupling in field theory should

have no CP factor, as Tr (σ2σ2) = 1.

Now to find the field theory couplings from the above amplitude, one should first

expand this amplitude. The amplitude has massless poles in all channels. However, the

on-shell constraint (4.3) does not allow us to send all s, t, u to zero. On the other hand,

the massless pole in s- and u-channels would be reproduce by the Ψ̄ΨT coupling which

we have shown that string theory does not produce it. Hence, one must consider the

following expansion:

s→ 0, t, u→ −1

4
(4.8)
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in terms of momenta, the expansion is

k1 ·k2, k1 ·k3, k2 ·k3 → 0 (4.9)

which is a momentum expansion.

Following [24], to expand the amplitude (4.6), we rewrite it as

A∼ūA
1 γ

µ
ABu

B
2 k4µ (4.10)

(

α
Γ(2u′ + 2t′)Γ(1

2 − 2t′)

Γ(1
2 + 2u′)

− β
Γ(2u′ + 2t′)Γ(1

2 − 2u′)

Γ(1
2 + 2t′)

+ iη
Γ(1

2 − 2t′)Γ(1
2 − 2u′)

Γ(1 − 2t′ − 2u′)

)

where t′ = t + 1/4 = −2k2 ·k3 and u′ = u + 1/4 = −2k1 ·k3. In terms of these new

Mandelstam variables, the constraint (4.3) becomes

s+ t′ + u′ = 0 (4.11)

Expanding the gamma functions, one finds

AΨ̄,Ψ,T,T = cūA
1 γ

µ
ABu

B
2 k4µ

(

α− β

−2s
+ (4.12)

+

∞
∑

n,m=0

[

an,m(αt′nu′m − βu′nt′m) + iηbn,m(t′nu′m + u′nt′m)
]

)

The coefficient bn,m is symmetric. Some of the coefficients an,m and bn,m are

a0,0 = 2 ln(2),

a1,0 =
2π2

3
+ 4 ln(2)2,

a0,1 = −π
2

3
+ 4 ln(2)2, (4.13)

a2,0 = 8ζ(3) +
16

3
ln(2)3 +

8π2

3
ln(2),

a0,2 = 8ζ(3) +
16

3
ln(2)3 − 4π2

3
ln(2),

a1,1 = −12ζ(3) +
32

3
ln(2)3 +

4π2

3
ln(2), · · ·

b0,0 =
π

2
,

b1,0 = 4π ln(2),

b2,0 =
2π

3
(π2 + 12 ln(2)2),

b1,1 =
2π

6
(−π2 + 24 ln(2)2),

b3,0 =
8π

3
(π2 ln(2) + 4 ln(2)3 + 6ζ(3)),

b2,1 =
8π

3
(12 ln(2)3 − 3ζ(3)), · · ·
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The constant c in (4.12) is a normalization constant which can be fixed by comparing the

massless pole with the Feynman amplitude in effective action. The massless pole should

be reproduced by the following non-abelian kinetic terms:

−TpTr

(

2πα′

2
DaTD

aT − (2πα′)2

4
FabF

ba − 2πα′

2
Ψ̄ΓaDaΨ

)

(4.14)

The Feynman amplitude is given by

V a,i(Ψ̄1Ψ2A)Gab,ij(A)V b,j(AT3T4)

The vertexes and propagator are

V a,i(AT3T4) = Tp(2πiα
′)(ka

3 − ka
4)
(

Tr (λ4λ3λ
i) − Tr (λ3λ4λ

i)
)

V a,i(Ψ̄1Ψ2A) = Tp(2πα
′)ūA

1 γ
a
ABu

B
2

(

Tr (λ1λ2λ
i) − Tr (λ2λ1λ

i)
)

Gab,ij(A) =
iδabδij

(2πα′)2Tps

This fixes c = 8Tp.

The contact terms with coefficients a0,0 and b0,0 are reproduced by the

following couplings:

α′TpTr
(

a0,0

(

Ψ̄γaΨTDaT − Ψ̄γaΨDaTT
)

+ ib0,0

(

Ψ̄γaTΨDaT − Ψ̄γaDaTΨT
)

)

(4.15)

It is hermitian and for abelian case it is zero. Note that the above couplings are the same

order as the kinetic terms (4.14). One may try to extend this amplitude to order (α′)1+n+m

along the line of [24] in general non-abelian case. We are here interested only in the abelian

couplings. The amplitude (4.12) becomes

AΨ̄,Ψ,T,T = cūA
1 γ

µ
ABu

B
2 k4µ

(

(a1,0 − a0,1)(u
′ − s′) +O(α′2)

)

The coupling corresponding to the above amplitude is

α′2c(a1,0 − a0,1)

4
Ψ̄γa∂bΨ∂aT∂bT = 2π2α′2TpΨ̄γ

a∂bΨ∂aT∂bT (4.16)

Now consider the action (1.2) in which the fields are normalized to have the same normal-

ization as the kinetic terms (4.14), i.e.,

L=−TpV
√

− det(ηab + 2πα′Fab − 2πα′Ψ̄γa∂aΨ + π2α′2Ψ̄γµ∂aΨΨ̄γµ∂bΨ + 2πα′∂aT∂bT )

Expansing the above action, one finds exactly the on-shell two-fermion-two tachyon cou-

plings in (4.16) including its coefficient. The above action is also consistent with the

amplitude (3.5). It would be interesting to extend the above amplitude to non-abelian

case such that it produces the non-abelian couplings of the string theory S-matrix ele-

ments. Using the numbers a0,0 = 2 ln(2) and b0,0 = π/2, one observes that the non-abelian

couplings (4.15) at order α′ is not given by the symmetric trace of natural non-abelian

extension of the above Lagrangian.
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